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Abstract

Web applications have come a long way, both in
terms of adoption to provide information and
services, and in terms of the technologies to
develop them. With the emergence of richer
and more advanced technologies such as AJAX,
web applications have become more interac-
tive, responsive and user friendly. These ap-
plications, often called Rich Internet Applica-
tions (RIAs), changed the web applications in
two ways: (1) dynamic manipulation of client-
side state and (2) asynchronous communica-
tion with the server. However, at the same
time, such techniques also introduced new chal-
lenges. One important challenge is the diffi-
culty of automatically crawling these new ap-
plications. Without crawling, RIAs cannot be
indexed nor tested automatically. Traditional
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crawlers are not able to handle these newer
technologies. This paper surveys the research
on addressing the problem of crawling RIAs
and provides some experimental results to com-
pare existing crawling strategies. In addition,
we provide some future directions for research
on crawling RIAs.

1 Introduction

Over the last decade, web applications have
evolved from simple applications which pre-
sented limited user experience into more re-
sponsive and interactive applications, so-called
Rich Internet Applications (RIAs).

A traditional web application consists of
HTML pages that are exclusively generated on
the server-side. Each HTML page is addressed
by a URL and may contain URLs (hyperlinks)
to other pages. In traditional applications, the
client-side (web browser) is only used for view-
ing a page received from the server and for re-
questing new pages by following the hyperlinks
on the current page. There is no processing
related to the application logic on the client-
side. Also, in traditional web applications the
communication is synchronous, meaning that
when a request is sent, the user interaction is
blocked until the response is received. Each re-
sponse is a complete HTML page that replaces



the current one shown to the user.

RIAs improve traditional web applications
in two ways: First, RIAs add more process-
ing capability on the client-side through client-
side scripts, such as JavaScript. That is, the
server now sends, along with the HTML page,
the scripts that could be executed when an
event occurs. An event is a user interaction
(such as a mouse click) or a time-out. The
scripts running on the client-side are able to
access and manipulate the page using a special
interface defined in a platform and language-
independent convention, called Document Ob-
ject Model (DOM) [1]. A DOM instance (or
simply DOM) is a tree data structure that is
built at the client-side following the hierarchi-
cal structure of the corresponding HTML page.
It basically contains all the information re-
quired to display the page as well as the events.
Client-scripts can generate new pages, by mod-
ifying the DOM of the currently displayed page,
without contacting the server. Second, the RIA
client-scripts can initiate asynchronous com-
munication with the server, using technolo-
gies like AJAX (Asynchronous JavaScript and
XML) [2]. That is, client-scripts can gener-
ate requests to the server without blocking
the user interaction and the responses are pro-
cessed whenever they arrive.

With these improvements, it is now possible
to modify the displayed page partially (or com-
pletely) to transform it into a new page on the
client-side, possibly using the data retrieved
asynchronously from the server. Thus, RIAs
provide continuous user experience by having
two programs running concurrently, one on the
server-side and one on the client-side.

However, this evolution of web applica-
tions has a serious impact on the ability to
crawl RIAs since RIAs violate the assumptions
on which traditional crawling algorithms are
based. These are the assumptions that each
page is addressed by some URL and the syn-
chronous communication.

Crawling is the process of exploring a web
application to discover the pages of the appli-
cation. There are two important motivations
for crawling. First, crawling is required to in-
dex the content of the application to make it
searchable. Second, crawling is required for the
automated testing of web applications for var-

ious purposes, such as detecting security vul-
nerabilities or accessibility issues. The result
of crawling is called “a model” of the applica-
tion that is crawled. A model consists of

• states that represent the distinct pages
and

• transitions that represent the possible
ways to move from one state to another.

Crawling a traditional application is rela-
tively easy since each state can be identified by
its URL. To discover the existing pages, it is
enough to find the different URLs in the appli-
cation and download the corresponding pages.
That is, the crawler starts from a given URL,
downloads the corresponding page and extracts
all the URLs embedded in the page. Then it
processes each newly discovered URL the same
way until all the pages are visited. Once a page
is discovered, it can be analyzed according to
the purpose of the crawl.

Using the traditional algorithm alone is not
enough for crawling RIAs since the client-script
execution can change the state of the applica-
tion without changing the URL. As a result,
we cannot in general rely on URLs to identify
states, except for a few that can be reached by
a URL. For this reason, the crawler has to iden-
tify the states based on the DOMs. In order for
a crawler to discover new states, it should sim-
ulate each of the possible user-interactions on
a page to see if a state change occurs, that is,
if an event results in a “different” DOM. This
is achieved by identifying the possible events
in the DOM of the given page and then exe-
cuting each event from that particular DOM
(executing an event means to execute the cor-
responding script). This type of exploration is
referred to as “event-based crawling”. Event-
based crawling should be applied separately for
each distinct URL whose corresponding page
has events. Event-based crawling for a given
URL terminates when all the states that can
be reached from the initial state of the URL
are discovered. This requires the crawler to
explore all the possible events from all the dis-
covered states, as it is not possible to know, a
priori, if executing an event from a state leads
to a new state or not.

It is an important challenge in event-
based crawling to recognize whether the DOM



reached after an event exploration corresponds
to a new state or whether the state was discov-
ered before. This is necessary to build a mean-
ingful model and avoid redundant exploration.
For this purpose, the crawler needs a DOM
equivalence relation. A DOM equivalence rela-
tion partitions the DOMs such that each sub-
set of DOMs (equivalence class) represents a
state. One may consider using the equality as
the DOM equivalence relation, which considers
two DOMs as equivalents only if they are iden-
tical. However, web pages often contain parts
that change frequently, such as advertisements,
timestamps or counters. Such information is
usually considered non-relevant for crawling, so
they should be ignored when identifying states
[3]. Simple equality would fail to ignore such
non-relevant parts and may lead to unneces-
sarily large models and redundancy in the ex-
ploration. We note that the DOM equivalence
relation to be used will depend on the purpose
of crawling. For instance, for content index-
ing the text content is important to consider in
the DOM equivalence, but for security analysis
the text content is often non-relevant since two
pages with the same structure but with differ-
ent text will most probably have the same se-
curity vulnerabilities. Thus, it is important to
choose an appropriate DOM equivalence rela-
tion for crawling.

A crawling strategy is an algorithm that de-
cides what should be explored next during the
crawl. In event-based crawling, the crawling
strategy is important for crawling efficiency. In
[4], we defined an efficient crawling strategy
as a strategy that is able to discover as many
states as possible, as soon as possible. This is
important, as for some large applications, the
crawl may take a long time to finish and we
would like to have as many pages as possible
to be available for indexing or analysis, early
on in the crawl.

It is important to note that (under the right
assumptions) loading a URL in the RIA leads
to the initial state of that URL. The action
of loading the URL to go back to the initial
state of the URL is called a “reset”. Resets
can be considered a special transition in the
model, which means that there is such a tran-
sition originating from each state, leading to
the initial state (of the URL). A reset transition

does not need to be traversed by the crawler (as
it will not discover a new state); nevertheless,
if needed it can always be used as a means to
reach the initial state. The states discovered
through event exploration cannot be reached
directly in this manner. To move from the cur-
rent state to another known state, the crawler
has to execute an already explored sequence of
events (possibly after a reset). For crawling
efficiency, the crawling strategy should try to
minimize the number of resets and event exe-
cutions used for such relocation purposes.

There are many other challenges in event-
based crawling. A common assumption is that
executing the same event from the same client-
state always leads to the same state. This as-
sumption can be violated if the state of the
application has a server-side state. In this
case, the state of the application cannot be de-
fined solely on the client-side, and the result of
the event executions depends on the server-side
state. Also, the state reached might depend
on the values of the user-inputs. Since in the-
ory, there could be an infinite number of user-
input values (consider, for example, the text
that the user can enter in a text field), it is usu-
ally assumed that a finite set of representative
input values (used during the crawl) would be
enough to discover all the states. In addition,
the unique identification of events across an ap-
plication is yet another challenge. The same
event could be found in different DOMs and
the crawling strategy may benefit from know-
ing if an event that exists in one state also exists
in another in order to make its decisions. The
last challenge that we mention here is the inter-
mediate states caused by asynchronous server
requests [5]. In RIAs, the client-scripts that
use asynchronous requests during the process-
ing of an event may lead to intermediate states
that are neither the state before the user re-
quest is made, nor the state after the response
is processed completely. The application is in
such an intermediate state when the request is
sent to the server but the response has not yet
processed. Note that during this time interval,
the application still allows user-interaction. In-
terleaving of several concurrent asynchronous
requests increases the number of such states.
Because of the cost and complexity of captur-
ing them, the intermediate states are usually



ignored.

The problem of crawling RIAs is a problem
that needs to be addressed in order to keep
web applications searchable and testable. In
this paper, we provide a survey of the work re-
lated to RIA crawling and point to some future
directions.

The paper is organized as follows. We start
with the survey of the research work in the field
of crawling RIAs in Section 2 and 3. In Sec-
tion 4, we describe the experimental results of
the available RIA crawling strategies. Finally,
we conclude with some future directions in the
field of crawling RIAs.

2 General RIA Crawling

The research area of web application crawl-
ing has made significant progress over the last
15 years. This facilitated the development of
crawlers used by search engines and the au-
tomated web application scanners that ana-
lyze web applications for security vulnerabili-
ties and accessibility issues. However, the ma-
jority of the research until recently has focused
on crawling traditional web applications.

Traditional web application crawling is a
well-researched field with multiple efficient so-
lutions [6]. However, today none of the search
engines and web application scanners are suffi-
cient for RIAs [7]. In the case of RIAs, the cur-
rent research is still trying to address the funda-
mental problem of crawling, i.e. automatically
discovering the web pages of the application.
This is not surprising given the short history of
RIAs, over less than a decade.

2.1 Centralized Crawling

In the last few years, several papers have been
published to solve the problem of RIA crawling
mostly focusing on AJAX based applications.
For example, [8, 9] focus on crawling strate-
gies for RIAs; [10, 11] focus on crawling for
the purpose of indexing and search. In [12],
the aim is to make RIAs accessible to search
engines that are not AJAX-friendly. In [13]
the focus is on regression testing of AJAX ap-
plications, whereas [14] is concerned with se-
curity testing of web widget interactions, [15]

focuses on invariant-based testing. However,
except for the work done in [8, 9] most of the
research is concerned with their ability to crawl
RIAs and not much attention has been given
to the actual efficiency of crawling. Crawling
RIAs in its naive form seems to favor the stan-
dard Breadth-First and Depth-First strategies,
which have been used in most of the published
research with some modifications.

One of the earliest attempts for an AJAX
crawling algorithm and optimization is pre-
sented in [11]. The authors proposed an AJAX
crawler that crawls the application based on
user events and builds a model of the applica-
tion. The application is modeled using tran-
sition graphs which contain all the application
entities (states, events and transitions). The
crawler uses the Breadth-First search strategy
to trigger all the events present in the page. If
the DOM of the page changes then a new state
and corresponding transition is added to the
transition graph. After a new state is reached,
the crawler uses a reset to go back to the initial
state and invoke the next event in the initial
state. Once all the events in the initial state
have been explored, the crawler explores in a
similar fashion the discovered states in the or-
der they are discovered.

In addition to the crawling strategy, the au-
thors also proposed few optimizations to im-
prove the efficiency of the crawling process.
They suggested caching of JavaScript func-
tion execution results to save expensive server
calls. If the same JavaScript function is invoked
again along with the same parameters, then the
cached results are used instead of executing the
function again.

In [10], the authors introduced an AJAX-
aware search engine for indexing the contents
of RIAs. Similar to traditional search engines,
it contains a crawler, indexer and query proces-
sor, but the components are adapted to handle
RIAs. The AJAX crawler has the role of iden-
tifying events in the application states. The
crawler starts with identifying and executing
events on the first page. The crawler uses a
standard Breadth-First search. The crawler
identifies a new state if an event execution gen-
erated a new DOM tree and the content of
the DOM is different from already discovered
states.



The result of the crawling process is main-
tained in a special application model which is
annotated with new information as the crawl-
ing proceeds. The authors recommended the
exploration of a limited number of different
events and different states or having a max-
imum limit on the depth of the crawl. The
other components of the search engine, such as
the indexer, read the information from the ap-
plication model discovered by the crawler.

In [16], the authors introduced AjaxRank
which is an adaptation of PageRank [17] to
states in RIAs. Similar to the PageRank, the
AjaxRank is connectivity-based, but instead of
links the transitions are considered. In the
AjaxRank, the initial state of the URL is given
more importance (as it is the only state reach-
able from anywhere directly), hence states that
are closer to the initial state also get higher
ranks.

In [12, 18], the authors proposed an approach
to analyze and reconstruct the states of RIAs
automatically. They also introduced the tool
“Crawljax” for the purpose of crawling RIAs.
The crawler is capable of exercising client-side
code and can identify events that change the
state of the application. The information dis-
covered by the tool is maintained as a state-flow
graph capturing the client-side states and the
possible transitions between them.

To distinguish between two states, an edit
distance is calculated between the DOM trees
using the Levenshtein method [19]. They use
a similarity threshold to determine whether a
reached DOM is a new state or not.

The crawler uses a crawling strategy similar
to the Depth-First strategy. To identify the
events in the current state, the differences be-
tween the previous DOM tree and the current
one is calculated. The resulting delta is used to
find new events that are then further processed
in a Depth-First manner. In other words, only
the HTML elements that changed from the pre-
vious state to the current one are analyzed to
identify new events to be explored from the
current state. To keep track of which events
are explored the tag name, the list of attribute
names and values, and the XPath expression of
the corresponding element is used.

Upon completion of the recursive Depth-
First call, the application should be put back

into the state it was before the call. This can
be done by using a reset and then click through
from the initial state. To optimize this oper-
ation, the authors state it is possible to use
Dijkstra’s shortest path algorithm to find the
shortest event sequence from the initial state
to the desired state [18].

The authors also developed a Domain Spe-
cific Language called Crawling AJAX Specifi-
cation Language (CASL) to define the elements
to be clicked during crawling along with the ex-
act order in which the crawler should crawl the
application.

After the crawling process is finished the cre-
ated state-flow graph can be used to generate a
multi-page static version of the original AJAX
application to enable search engines to crawl
and index contents of the RIA.

In [20, 21], the authors focus on modeling
and testing RIAs using execution traces. Their
initial work [20] is based on first obtaining
execution traces from user-sessions (a manual
method). Once the traces are obtained, they
are analyzed and an FSM model is formed
by grouping together the equivalent user in-
terfaces according to an equivalence relation.
The proposed technique was also implemented
by a software tool called “RE-RIA” to perform
these activities. In a later paper [21], they in-
troduced a tool, called “CrawlRIA”, which au-
tomatically generates execution traces using a
Depth-First strategy. That is, starting from
the initial state, events are executed in a depth-
first manner until a DOM that is equivalent
to a previously visited DOM is reached. Then
the sequence of states and events is stored as
a trace in a database, and after a reset, crawl-
ing continues from the initial state to record
another trace. These automatically generated
traces are later used to form an FSM model us-
ing the same technique that is used in [20] for
user-generated traces.

In [22], the authors introduced “CreRIA” an
integrated reverse engineering environment for
dynamic analysis of RIA for supporting the
comprehension of processed RIAs. They use an
agile, iterative process for this purpose. How-
ever, the model must be validated by a human
expert on the basis of his knowledge about the
application.

In [23], the authors presented a tool called



“DynaRIA” that has been designed to support
the comprehension of RIAs in different con-
texts, such as maintenance, reverse engineering
and testing processes. The tool is based on dy-
namic analysis of the application and provides
functionalities for capturing and tracing the
user sessions, analyzing the data captured and
producing several types of abstractions and vi-
sualizations about the run-time behavior of the
application such as UML sequence diagrams at
various levels of detail. Such information might
be useful for obtaining an overview of infor-
mation exchanged between the server and the
client, the timing behavior, the events executed
etc.

In [24], the authors proposed the extraction
of an FSM representation of an AJAX applica-
tion through dynamic analysis, complemented
by information coming from static code analy-
sis. One important point here is that dynamic
analysis is by definition partial, and hence
they recommended a manual validation step
after the model extraction to ensure that the
states and transitions of the extracted model
are valid. Any missing states or transitions
must be added manually. The amount of man-
ual work required in this step depends on the
number and quality of the available informa-
tion after the dynamic analysis.

In [25], the authors suggested using a greedy
crawling strategy. That is, the strategy is to
explore an event from the current state if there
is an unexplored event. Otherwise, the crawler
moves to the closest state with an unexplored
event. They also suggested two other variations
of this strategy. In these variations, the most
recently discovered state and the state closest
to the initial state are chosen when there is
no event to explore in the current state. They
concluded all three variations have similar per-
formance on their test applications in terms of
the total number of event executions complet-
ing the crawl.

2.2 Distributed Crawling

2.2.1 Traditional Models

Due to the large size of the web, it is often the
case that crawlers use several nodes (i.e. com-
puters) to crawl the web simultaneously. Dis-
tributed crawling of the web has been exten-

sively described in the literature [6]. [26] clas-
sifies distributed crawlers based on their work
assignment method into three classes:

Independent Assignment: Different
crawlers start from different URLs and crawl
the web independently. This approach may
lead to overlap and duplication of work.

Dynamic Assignment: This approach is
based on one or more units that keep track
of discovered and executed tasks. Upon dis-
covering a task, the node will inform these
units and if it is a new task, the unit will
add it to the task queue. Nodes then ask the
unit for workload, and the unit assign tasks to
the probing nodes [27]. The first prototype of
Google roughly followed this architecture: A
centralized unit, called URLserver, stores the
list of URLs and orders a set of slave nodes
to download each URL. All downloaded pages
are stored in a unit, called Storeserver. The
retrieved pages are then indexed distributively.
Both the downloading and indexing tasks re-
quires centralized units of coordination [28].

Static Assignment: In this approach a set
of homogeneous workers are allocated unique
IDs. The mapping function maps each task to
one of the assigned IDs. Upon encountering a
task the crawler examines the task and decides
whether the task falls under its jurisdiction or
belongs to another node. In the first case, the
node takes care of the task autonomously. Oth-
erwise, the node will inform the node respon-
sible for the task [26]. Different proposals sug-
gest different matrices and algorithms to derive
the mapping function. In [29] the distribution
of the task of crawling of the different URLs
is performed by hashing the URL (either only
the host-name part, or the entire URL) and
distributing the resulting hash values to the
different crawlers, for instance, using the dis-
tributed hash table (DHT) of a peer-to-peer
system. [30] also includes the geographic in-
formation about the crawlers and the searched
servers into the task distribution algorithm in
order to allocate a crawler that is geographi-
cally close to the server to be crawled. Ubi-
Crawler [31] uses the so-called consistent hash-
ing approach to allocate the tasks to the differ-
ent crawlers in such a way that there are only
minimal changes when some crawler disappears
or new crawlers come in. This approach can be



used to obtain better fault tolerance.

2.2.2 Limitations

Partitioning the search space based on the URL
may not lead to the best performance in a RIA.
In a traditional web application, there is often
a one to one relation between the state of the
DOM and the URL of the page. This allows
the crawlers to balance the work load among
them by partitioning the search space based on
the URLs using the Static Assignment method.
This assumption is however broken in a RIA in
which one seed URL may be associated with a
large number of DOM states. Furthermore, the
cost of reaching a DOM state in the traditional
web applications is often constant: one simply
has to download the target URL. This is not the
case in a RIA. In order to get to a DOM state
one first has to download a seed URL, then ex-
ecute a set of events, some involving communi-
cation with the server, to reach the DOM state.
Deviation of the RIAs from the traditional web
applications with respect to these fundamental
issues makes the current strategies less suitable
for this purpose.

The only parallel method of crawling RIAs
we know of is that of Mesbah et al. who use
threads to concurrently crawl RIAs [18]. This
approach is based on shared memory among
the threads which is given in a multi-core pro-
cessing unit. However, this approach cannot be
deployed over multiple computers.

3 Model-Based Crawling

At the first glance, the use of Breadth-First or
Depth-First strategies might look like a good
solution to the problem of event-based crawl-
ing. This is more or less the approach taken
in the relevant research works as discussed
above. But none of this research has focused
on the efficiency of the crawling strategy. Ef-
ficiency is an important factor when it comes
to crawling RIAs, as most RIAs are complex
web applications with a very large state space.
The Breadth-First and Depth-First strategies
in their standard form and under specified cir-
cumstances will eventually be able to crawl a
given RIA. However, there are two important
shortcomings of these strategies when used for

RIAs. First, they do not predict which event
executions are more likely to lead to new states.
Therefore they do not have any mechanism
to prioritize some events over others. Second,
both strategies explore the states in a strict or-
der. That is, in Depth-First crawl, the most
recently discovered state is explored first, and
in the Breadth-First crawl the state that is dis-
covered earlier is explored first. Note that, ex-
ploring a state means to explore all the events
in the state, hence when these strategies end
up in a state that is different than the one cur-
rently being explored, they need to go back
to that state in order to finish the remaining
events. That increases the number of event
executions and resets used for relocation pur-
poses. In [8] the authors indicate opportunities
to be able to design more efficient strategies
by identifying general patterns in the actual
RIAs being crawled and using these patterns
to come up with reasonable assumptions about
the model of the application. This approach
has been called “Model-Based Crawling”. The
assumptions can be justified by the user by in-
teracting informally with the RIA in order to
gain a general understanding of how it is struc-
tured and how it interacts with the user. In [8]
the concept of model-based crawling is defined
as follows:

1.“First, a general hypothesis about the behav-
ior of the application is conceptualized. The
idea is to assume that the application will be-
have in a certain way. Based on this hy-
pothesis, one can define the anticipated model
of the application, which is called the “meta-
model”. This will transform the process of
crawling from the discovery activity to deter-
mine “what the model is” to the activity of
validating whether the assumed model is cor-
rect”.
2.“Once a hypothesis is elaborated and an as-
sumed model is defined, the next step is to de-
fine an efficient crawling strategy to verify the
model. Without having an assumption about
the behavior of the application, it is impossible
to define any strategy that will be efficient”.
3.“However, it is important to note that any
real world application will never follow the as-
sumed model to its entirety. Therefore, it is
also important to define strategies which will
reconcile the differences discovered between the



assumed model and the real model of the ap-
plication in an efficient way”.

Thus, model-based crawling defines the goal
of a crawling strategy as being able to antic-
ipate automatically an accurate model of the
application.

In [8], a two-stage approach to confer to the
primary goal of finding all states as soon as
possible is also defined. The first phase is the
“state exploration phase”. It aims at discov-
ering all the states of the RIA being crawled.
Once the strategy predicts, based on its as-
sumptions, that there are no new states to
discover, it proceeds to the second phase, the
“transition exploration phase” which tries to
execute the remaining transitions that was not
explored in the first phase, to confirm that
nothing has been overlooked. The motiva-
tion for defining these two phase is that in
many cases the application is too complex to
be crawled completely, and it is important to
explore, in the given time, as many states as
possible, but unless all transitions have been
explored, one cannot be sure that all states are
found.

3.1 Hypercube

The first meta-model that was introduced in
this context was the Hypercube meta-model
[8]. The Hypercube meta-model is based on
two assumptions:
(1) Given a set of events enabled at a state,
executing these events in different orders does
not change the state reached.
(2) When an event is executed; it becomes
disabled but does not disable or enable other
events.
The model of an application that follows these
assumptions is a hypercube structure. An op-
timal strategy to crawl the applications that
follow the Hypercube meta-model is designed.
That is, if an application has a hypercube
model, the Hypercube strategy uses a minimal
number of resets and event executions to first
visit every state and later to make sure that
every transition is explored once. Of course,
the Hypercube strategy adapts itself in case the
application does not follow the hypercube as-
sumptions.

3.2 Probability

In the probability strategy [9], some statistical
information about the behavior of the events
in the application is collected during the crawl.
That is, events are prioritized based on their
probability of discovering a new state. Initially,
each event has the same default probability and
when an event is explored its probability is up-
dated based on the result of exploration. Then,
the strategy is simply to take the action that
will maximize the probability of finding a new
state while trying to minimize the number of
events and resets used for relocation purposes
(that is, the cost of moving from the current
state to another known state for exploring an
event).

3.3 Menu

The menu meta-model is formed based on
the following hypothesis about the application:
The result of an event execution is independent
of the state (source state) where the event has
been executed and always results in the same
resultant state. This can be conceptualized as
a mapping between the event and the resulting
state.

Such behavior for example is realized by the
menu items present in a web application or
other common applications such as “home”,
“help”, “about us” etc. Executing these menu
items will result in the same state.

The menu crawling strategy categorizes the
events into multiple priorities based on the
event’s likelihood of discovering a new state
and whether the event has followed the menu
assumption in its previous execution instances.
The menu crawling strategy then executes the
events in order of their priority. The priori-
ties of the events are updated as more informa-
tion is discovered about their execution results
from different states and when the assumptions
about the event execution results are violated.

4 Experimental Results

In this section, we compare the performance of
the Breadth-First, Depth-First, Greedy, Menu,
Hypercube, Probability and Crawljax strate-
gies. We use two real RIAs and two test RIAs.



The following metrics are used for performance
evaluation.
(1) Number of events and resets required to dis-
cover all states
(2) Number of events and resets required to ex-
plore all transitions
A reset is loading the URL of the application
to go to the initial state. Resets are typically
costlier (in terms of time of execution) than
event executions. For simplicity, we have com-
bined the events and resets used by a strat-
egy into a single cost factor. For this purpose,
we have expressed the cost of reset in terms of
number of event executions (the actual value
used is application-dependent and measured by
experiments). We believe that the number of
events executions is a good metrics for perfor-
mance evaluation since the time to crawl is pro-
portional to the number of events executed dur-
ing the crawl.

We also present the optimal number of event
executions necessary to explore all the states of
an application. Note that, this optimal value is
calculated after the fact, once the model of the
application is obtained. This number is found
by an Asymmetric Traveling Salesman Problem
(ATSP) solver [32] on the extracted models.

We are interested in two factors to define the
efficiency of the crawl [9]:
1. State Discovery Cost: The cost required
to discover all the states of the application.
This cost is important as it might not be fea-
sible to finish the crawl (factors such as tim-
ing constraints) and hence, we would want to
explore as much states as possible within the
given runtime of the algorithm. Thus, it is very
important to find what percentage of the total
state space has been discovered by the crawling
algorithm at any given time during the crawl.
2. Total Crawling Cost: The total cost re-
quired to complete the crawl i.e. to discover
the complete application model.

4.1 Comparison with Crawljax

It is important to note that the default strategy
used by Crawljax does not explore every event
from every state 1. That is, an event is only

1In this study, Crawljax version 2.0. is used and
except for specifying which elements to click for each
application, no limits are imposed in the crawl configu-

executed from the state where the event is first
encountered. When its default strategy is used,
Crawljax might not discover all the states. For
this reason, it is hard to compare the perfor-
mance of our strategies (which aim at crawl-
ing the application completely) with the results
obtained with the default strategy of Crawljax
(which does not have such a goal). Neverthe-
less, we present the number of states discovered
and the corresponding costs using the default
strategy of Crawljax which will be referred to
as Crawljax Default in the remainder.

Crawljax can also be configured (by disabling
the “clickOnce” option) such that it explores
the application completely like the other strate-
gies. In that case, the Crawljax’s strategy is
a Depth-First strategy and is able to discover
all the states. However, this Depth-First strat-
egy is an “unoptimized” one, meaning that
each time Crawljax needs to relocate to an-
other state to explore an event, it uses a re-
set and follows an event sequence that will
lead to the destination state. Our implementa-
tion of the Depth-First strategy is “optimized”
such that the shortest path from the current
state to the destination state is used for re-
locations (the same is true for our Breadth-
First implementation). The results we present
as Depth-First strategy is obtained using our
implementation. The “unoptimized” version
of the Depth-First strategy gives worse results
than what we present here.

4.2 Test Applications

The first real RIA we consider is an AJAX-
based periodic table2. In total 240 states and
29034 transitions are identified by our crawler
and the reset cost is 8.

The second real application considered is
Clipmarks3. For this experimental study we
have used a partial local copy of the website.
It consists of 129 states and 10580 transitions

rations regarding the parameters like the crawl depth,
the maximum number of states to explore, the maxi-
mum runtime etc. The details of the configurations we
have used for the experiments can be found at http://
ssrg.eecs.uottawa.ca/docs/crawljax/config.pdf

2http://code.jalenack.com/periodic/
(Local version: http://ssrg.eecs.uottawa.ca/periodic/)

3http://www.clipmarks.com/
(Local version: http://ssrg.eecs.uottawa.ca/clipmarks/)

http://ssrg.eecs.uottawa.ca/docs/crawljax/config.pdf
http://ssrg.eecs.uottawa.ca/docs/crawljax/config.pdf


and the reset cost is 18.
The third application, TestRIA4 is a test ap-

plication that we developed using AJAX. It has
39 states and 305 transitions and a reset cost
of 2.

The fourth application is a demo web ap-
plication maintained by the IBM R© AppScan R©

Team 5. We have used the AJAX-fied version
of the website. The application has 45 states
and 1210 transitions and a reset cost of 2.

4.3 State Discovery Results

We first present the cost required by each strat-
egy to discover all the states of an application.
It is important to mention that the cost of find-
ing all the states does not necessarily corre-
spond to a complete crawl since the crawler
does not know that all the states have been
discovered until it has executed all the events.
The cost of complete crawl is described in Sec-
tion 4.4.

For compactness of the presentation of our
results we use box plots: the top of a verti-
cal line shows the cost required to discover all
the states. The lower edge of the box, the line
in the box and the higher edge of the box indi-
cate the number required to discover a quarter,
half and three quarters of all the states of the
application, respectively. The position of the
box and the horizontal lines in the plot is used
to assess whether a method is able to discover
new states faster than others. The presented
box plots does not contain results for Crawl-
jax Default for the reasons explained in Section
4.1.

In addition, the Table 1 shows for each ap-
plication and for each strategy, the number of
states discovered, the total number of event ex-
ecutions and resets required by the strategy to
discover the states.

The results show that model-based crawl-
ing strategies discover all the states of the
application more efficiently than the Greedy
[25], the Depth-First and the Breath-First
strategies. Except for AltoroMutual, Crawl-
jax Default did not discover all the states hence
a comparison with Crawljax Default is not pos-
sible in general.

4http://ssrg.eecs.uottawa.ca/TestRIA/
5 http://www.altoromutual.com/

4.4 Costs of Complete Crawls

We also present in Table 2 the costs required
for the complete crawl of each application i.e.
the cost required to discover the complete ap-
plication model. The table does not include
data for Crawljax for the reasons explained in
Section 4.1.

We can again see that the model-based
crawling approach has better performance than
the other strategies, especially the Breadth-
First and the Depth-First strategies.

4.5 Results Evaluation

As an overall evaluation, model-based crawling
seems to be a promising approach for design-
ing efficient crawling strategies for RIAs. The
model-based crawling strategies aim at finding
most of the states of the application as soon as
possible and eventually find all the states and
transitions of the web application. Experimen-
tal results show that the model-based crawl-
ing strategies perform very well and outper-
form the Depth-First and Breadth-First crawl-
ing strategies by significant margins. Further,
they also outperform the Greedy strategy in
most cases while being comparable in the least
favorable example.

5 Future of RIA Crawling

As web applications are evolving and expand-
ing rapidly, merely relying on model-based
crawling is not always sufficient to guarantee a
good coverage and freshness with limited com-
putational resources. The complexity of the
emerging RIAs requires one to deploy a variety
of techniques to crawl RIAs efficiently.

Such techniques should help the crawling en-
gine to learn about the characteristics of the
application on-the-fly so that the engine can
optimize its strategies, avoid taking unneces-
sary transitions and achieve a good coverage
and freshness with the available resources. Fur-
thermore an unavoidable step in the future of
RIA crawling is to harvest the power of parallel
processing and cloud computing to reduce the
long time it takes to crawl an application. This
section elaborates on some of these emerging
techniques.



Figure 1: Costs of State Discovery (in log scale)

Periodic Table Clipmarks TestRIA Altoro Mutual
States Events Resets Cost States Events Resets Cost States Events Resets Cost States Events Resets Cost

Crawljax Default 121 146 121 1, 114 22 79 29 601 21 52 16 84 45 109 54 217
Depth-First 240 897, 080 78 897, 704 129 19, 300 45 20, 106 39 1, 312 1 1, 314 45 6, 822 15 6, 853
Breadth-First 240 28, 888 7, 504 88, 922 129 12, 619 894 28, 711 39 1, 118 54 1, 226 45 1, 868 333 2, 534
Greedy 240 29, 653 83 30, 316 129 11, 029 21 11, 414 39 910 1 912 45 1, 828 12 1, 851
Hypercube 240 29, 643 78 30, 267 129 10, 985 16 11, 271 39 894 1 896 45 919 28 976
Menu 240 16, 543 26 16, 747 129 6, 008 33 6, 596 39 115 1 117 45 100 3 107
Probability 240 28, 935 2 28, 951 129 10, 820 25 11, 266 39 126 1 128 45 180 7 193
Optimal 240 239 1 247 129 128 2 164 39 57 1 59 45 72 1 74

Table 1: State Discovery Results

5.1 New States without New In-

formation

The states of the web application are usually
defined based on their DOM structures and
contents. Whenever the crawler encounters a
DOM that is not seen before, it is regarded as a
new state that needs to be investigated. How-
ever, a drawback of this definition of state is
that a new DOM might not necessarily contain
new information. A promising direction to im-
prove RIA crawling is to detect and avoid such
states. A good example of a web application in
which such situation occurs frequently is a web
application that consists of several independent
widgets. Since each widget shows different con-
tents at different times independently of oth-
ers, they can easily combine with each other in
different ways and make up new DOMs which
actually contain no new data. Failure to de-
tect such states as known states may lead to
an unnecessary state space explosion and can
cause the crawling time to increase exponen-
tially. A new definition of state can help iden-

tifying them. A future direction of RIA crawl-
ing is to make a new definition of web applica-
tion states which is not based on DOM equiva-
lence, but rather based on interesting informa-
tion that they contain.

One possible approach in this direction is to
make the crawler smart enough to guess which
portions of a web application interact with the
user independently of other portions and assign
states to each portion separately, called sub-
states. This way, a new DOM which is basically
a new combination of already seen sub-states
would not be considered as a new state of the
web application.

5.2 Adaptive Crawling

One possible significant improvement to model-
based crawling would be to adapt the meta-
model on-the-fly, based on the model built so
far. Currently, the idea is to commit to a meta-
model before the crawling starts, a commit-
ment that must be made based on some ex-
ternal factors that are difficult to specify. In-



Periodic Table Clipmarks TestRIA Altoro Mutual
Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost

Depth-First 897, 358 236 899, 246 19, 569 72 20, 868 1, 433 1 1, 435 6, 876 34 6, 944
Breadth-First 64, 850 14, 633 181, 916 15, 342 926 32, 015 1, 216 55 1, 326 3, 074 334 3, 742
Greedy 29, 926 236 31, 814 11, 396 56 12, 398 1, 001 1 1, 003 2, 508 34 2, 576
Hypercube 29, 921 236 31, 809 11, 350 56 12, 356 994 1 996 2, 489 34 2, 557
Menu 37, 489 236 39, 377 11, 769 71 13, 043 974 1 976 2, 457 35 2, 527
Probability 29, 548 236 31, 436 11, 456 62 12, 563 972 1 974 2, 451 34 2, 520

Table 2: Costs of Complete Crawls

stead, the crawl could be started initially fol-
lowing a “generic” meta-model, for example the
probability meta-model, which is expected to
provide good results in general. Then, after
having crawled enough to accumulate some in-
formation about the model of the application,
an analysis of the current graph could be done
to evaluate whether some other meta-model
would be more suitable. If one most suitable
meta-model was found, a switch to that meta-
model could be done, and the crawling would
continue following that model. The situation
could be regularly re-evaluated, and the meta-
model switched more than once. It is even
conceivable to mix meta-models, using differ-
ent meta-models on different parts of the ap-
plication.

We can push the concept even further and
in effect create the meta-model itself on-the-fly
based on the information gathered. For exam-
ple, if some repeating pattern was detected in
the site, the graph on the pattern could be ana-
lyzed to find an efficient way to crawl that par-
ticular graph. If the graph is small enough, an
optimal crawl can even be computed. Then, as
more instance of the pattern is uncovered, the
optimal crawling strategy is followed. This lat-
ter approach would be particularly efficient for
very large web sites with itemization of some
information or widgets: these items or widgets
typically repeat many times. In this case, once
the pattern is detected, an optimal, strategy
can easily be constructed for the pattern and
reused from that point on, on every new in-
stance of the pattern.

5.3 Greater Diversity

Exhaustive crawling on a large web application
might take excessively long time to finish. It is
not always feasible to wait for the crawl to fin-
ish completely before getting any results. Of-

ten it is more desirable to terminate the crawl
after a limited amount of time. In such cases,
there is the question which states of the ap-
plication are crawled and which are postponed
to be crawled later. When viewing results of
a partial crawl, there is an expectation of a
bird-eye view of the application instead of hav-
ing detailed information on a small portion of
the application and nothing from other parts.
Therefore, the crawler needs to have a “diversi-
fied” exploration strategy, much like a human
would do, instead of getting stuck in a par-
ticular subset for a very long time. We call
this goal diversifying the crawl. In order to
attain this goal one may prioritize the states.
Diversifying the crawl is especially useful for
applications with a large number of repeating
structures such as the ones with long lists of
items. Prioritizing states in such a way that
the crawler moves away from these lists once
it examines a few items in them rather than
exhausting the whole list, may be a potential
solution to this problem.

5.4 Distributed Crawling

One way to tackle the complexity of crawl-
ing large RIAs is to use multiple nodes. As
explained in 2.2, distributed crawling of the
web is a norm in traditional web crawling. To
the best of our knowledge however distributed
crawling of RIAs remains mostly an unexplored
area in the literature of web crawling. One can
use the thread-based model proposed in [18]
and scale it up to achieve distributed crawl-
ing of RIAs. To scale this model up, one may
replace each thread with a full-fledged operat-
ing system process running on different nodes,
and also replace the shared memory among the
threads with a central coordination unit. Pro-
cesses can then contact this coordinator and
get work assigned to them. This model is simi-



lar to the traditional dynamic work assignment
in distributed crawling.

Similar to the crawling of traditional web
applications one can also deploy static work
assignment in distributed crawling of RIAs.
In this model however merely partitioning the
search space based on the URLs discovered may
result in a few nodes becoming a bottleneck,
due to the fact that the total number of states
associated with a URL may vary a lot from
one URL to another. Stronger load balancing
algorithms and more sophisticated portioning
strategies have to be devised to alleviate this
asymmetry.

Running the crawl over an elastic cloud is
another useful strategy to reduce costs and
achieve higher efficiency. In an elastic cloud
environment extra nodes may become available
to the system or some of the current nodes may
leave the system. Taking advantage of such an
environment is trivial in the dynamic work as-
signment model: when a new node joins the
system it simply requests work from the coor-
dinator, and if a node intends to leave it sends
its remaining work assignment back to the co-
ordinator. In the static model, one can intro-
duce load balancing or repartitioning the task
space among the new set of workers in order to
achieve an adjusted work force.

As with any crawler, a distributed RIA
crawler may inadvertently be seen as launching
a Distributed Denial of Service (DDoS) Attack.
To avoid such situation a mechanism that lim-
its the total number of requests should be in-
tegrated into the model. In the dynamic work
assignment model, the coordination unit can
be used to monitor and restrict the number of
requests sent to a server. This unit may re-
turn a time frame with each task to the re-
questing node. It is then the responsibility of
the node to perform the task within the al-
located time frame. In the static model, one
can achieve ”politeness” by having a quota al-
located to each node. It is then the responsi-
bility of the node not to send more than the
specified quota of requests to the server over
any given time period. Similar to the tasks,
quotas may be transferred to other nodes to
avoid that a node becomes a bottleneck if it
exhausts its quota.

Acknowledgements

This work is supported in part by IBM and
the Natural Science and Engineering Research
Council of Canada.

About the Authors

Suryakant Choudhary and Ali Moosavi are
Master students at the EECS at the University
of Ottawa working on the topic of designing
efficient crawling strategies for RIAs.

Mustafa Emre Dincturk and Seyed M. Mir-
taheri are PhD candidates at the EECS at the
University of Ottawa working on model-based
crawling of RIAs and distributed crawling of
RIAs, respectively.

Gregor v. Bochmann is a professor at the
EECS at the University of Ottawa since 1998,
after 25 years at the University of Montreal. He
is a fellow of the IEEE and ACM and a member
of the Royal Society of Canada. He is known
for his work on communication protocols and
software engineering. Ongoing projects include
the systematic development of distributed ap-
plications from global requirements, reverse en-
gineering of RIAs, and control protocols for op-
tical networks.

Guy-Vincent Jourdan is a professor at the
EECS at the University of Ottawa. He joined
the EECS in 2004, after 7 years in the private
sector. He received his PhD from l’université
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